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Abstract Representation formulas and fundamental solutions of the governing equations of tran-
sient piezoelectricity are obtained through a generalization of the reciprocal theorem and the plane
wave transform method. It is shown that dynamic fundamental and singular solutions can be
reduced Lo one-dimensional integral expressions by means of a slowness surface. The article provides
the necessary mathematical foundations towards the development of the boundary element method
for nonstationary, three-dimensional electroelastic problems.

I. INTRODUCTION

Problems involving deformable anisotropic dielectrics pose. in general, formidable math-
ematical complexities. A typical example is furnished by piezoelectric materials. In such a
case, strong clectromechanical coupling effects preclude closed form solutions except for
cases dealing with bodies of infinite extension subjected to simple loading conditions.
Piezoelectric ceramics and polymers are finding a growing number of important applications
in aerospace, automotive, medical and electronic technologies. [t is not surprising, therefore,
that new efforts are being concentrated on the search for numerical procedures as a means
to predict the behavior of these materials under severe loading conditions.

Because of its versatility. efficiency and economy of numerical calculations, the bound-
ary element method (BEM) appears to be a good alternative to treat piezoelectric boundary-
value problems. As a consequence, recent articles have been devoted to two important
aspects of the BEM formulation: (a) the construction of fundamental solutions, i.e. Green’s
functions ; (b) the derivation of representation formulas. The latest examples are provided
by the works of Lee and Jiang (1994). Chen and Lin (1993) and Chen (1993). A common
deficiency. however. in these and other articles dealing with numerical approaches is that
the formulations are restricted to time-independent behavior. Applications of piezoelectric
materials in the areas of electromechanical devices and clectronic packaging are but two
examples to illustrate the fact that the transient response of the material is an important
phenomenon and, hence. cannot be neglected. Therefore, it becomes clear that more
general and physically realistic formulations are a basic need to completely characterize the
mechanical and electrical behavior of piezoelectric-based structures. Within this general
framework. Norris (1994) has discussed the derivation of dynamic Green'’s functions for
problems dealing with piczoelectricity and other coupling phenomena in anisotropic media.
His elegant paper. however, is constrained to time harmonic equations and, furthermore,
the final expressions for the fundamental solutions are given in a transformed domain only.

While the present article relies upon concepts also found in Norris (1994), it has no
restrictions regarding the behavior of the equations with respect to time and, as it will be
shown, the final results are presented in fairly simple forms and quite suitable for numerical
implementation. Such features are of extreme importance in view of the fact that the ultimate
goal is the development of a general purpose BEM computer program for applications in
the area of electrodynamics of deformable bodics. Towards this end, representation for-
mulas are derived by making use of a generalization of the reciprocal theorem of ela-
stodynamics which includes electrical effects. These representation formulas are given in
terms of dynamic fundamental solutions to the equations of transient piezoelectricity and
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their derivatives. The main body of the paper is. in fact. devoted to the derivation of explicit
expressions for such fundamental and singular solutions. The mathematical approach is
based on the plane wave transform. which consists of representing the three-dimensional
Dirac-delta function by means of an integral over the unit sphere (Gelfand and Shilov,
1964).

An important feature of our paper consists of showing that the aforementioned unit
sphere representation is just one manner of describing the fundamental solutions. In fact,
simpler expressions can be obtained by means of alternative representations. In a paper
devoted to particular cases of aelotropic elastodynamics. Burridge (1967) has shown that
the Green's functions can also be represented by integrals over the so-called slowness
surface. In the present paper we generalize his work to transform the Green's functions
originally derived over the unit sphere into integrals evaluated over the slowness surface of
an arbitrary piczoelectric body. These results. however. are only an intermediate step
towards the derivation of expressions that constitute one of the most unique aspects of the
present article. Indeed, we show that the dynamic fundamental and singular solutions of
piezoelectricity can be represented by one-dimensional integrals along a path determined
by the intersection of the slowness surface with a plane moving in the direction of the field
vector (Khutoryansky, 1985). It is important to note that, despite the complexities involved
in dynamic piezoelectric problems. the one-dimensional representations are strikingly
simple in form.

As a prelude to the numerical implementation of the representation formulas and
fundamental solutions in a BEM program. we provide a discussion on the behavior of the
solutions in the neighborhood of the body’s boundary. as well as the nature of the singu-
larities involved in the representation formulas. Moreover, we derive by means of the
corresponding static solutions a special regularized form of the representation formula,
which is continuous across the boundary and, more importantly. it also holds at boundary
points wherc the normal does not exit. We conclude the article with a brief discussion
regarding the nature of the boundary conditions most typically encountered in electroelastic
problems.

2. MATHEMATICAL PRELIMINARIES

We make use of both direct and component (or indicial) notation within the framework
of Cartesian coordinates. In the former case, tensors of rank one or above and their matrix
representations are denoted by bold face letters. In the case of component notation we
invoke the summation convention over repeated Latin subindices, which can be of two
types with different ranges: i, j. A. /= 1. 2. 3 and M, N =1, 2. 3. 4. Moreover, partial
differentiation with respect to a space variable is denoted with a comma, while the time
derivative is indicated with a dot over the variable or, alternatively, by the symbol 2.

We consider a homogeneous piezoelectric body 4 with boundary ¢4 whose motion
in the Euclidean space is described in terms of the independent variables x = {x;} and r.
The description of the body is done through the equations of motion and Gauss’ law,
namely

dive +f = pii
divD = q. (la,b)
where 6 = {o,;. u= {u,). D= D!.p. f=!f! and ¢ denote stress, elastic displacement,
electric displacement. mass density. body force per unit of volume and electric charge
density, respectively. In addition. let ¢ = {¢,} and E = {E,} be the strain and electric field,
respectivelv. given by
¢ = (Vu+Vu')

E= V. )
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where the second equation, with ¢ being the electric potential, is a consequence of the
quast-electrostatic approximation.

The set of equations (1) and (2) is complemented with constitutive relations derived
formally from appropriate thermodynamic potentials. There are four different ways of
expressing these relations. If the strain and the electric field are chosen as the independent
variables, the thermodynamic potential is the electric enthalpy ‘P(e, E) (Parton and
Kudryavtsev, 1988). given by

¥ = U@ D)—E‘D, 3)

where U is the internal energy expressed in terms of strain and electric displacement. As a
result, it can be shown that the constitutive relations for linear piezoelectricity become

e
= B = Cisbrs— ry by

oy

/

"

Y
D, =~ E. = b+ €n ks @

i

where Cy,, ., and ¢, are the elastic (measured at constant electric field), piezoelectric and
dielectric (measured at constant strain) material constants, respectively, satisfying the
following symmetry relations:

Cor = Cin = Gy = Cupys iy = iy € = €

The combination of eqns (1) and (2) with (4) results in a system of four partial
differential equations coupling the displacement’s components and electric potential,
namely

Ciaitli i+ ey 1+ 1 = pii;
Cotti i — P ri = g. (5a,b)

Notice that in eqn (5b) there is no time rate due to the quasi-electrostatic approximation.
This means that the time in ¢ appears as a parameter, and time dependence is induced only
by the displacement u.

The solution of eqn (5) is constrained to mechanical and electrical boundary conditions,
which can be written as

u=i on &4,

ov=1t on (4,

9]=0 on &4,
Dj-v=w on &34, (6a—d)

where @, £ and w are the values of displacement, traction and surface charge, respectively,
prescribed over different portions of the boundary ¢4 (or interfaces separating different
materials), whose outward unit normal is denoted by v = {v,;}. Moreover, [ /] =f"—/"
represents the jump of the enclosed quantity across the boundary or interface. Finally,
initial conditions must be specified for the elastic displacement and its first derivative, i.e.

U(X, 0) = ul)(x)
u(x, 0) = vy(x). (7)

A few words regarding the initial conditions are in order. In the sequel we consider



3310 N. M. Khutorvansky and H. Sosa

the values of 6. u. D. ¢. f and ¢ to be defined for re (—oc, oc) and to be equal to zero if
¢ < 0. In such a case it is clear that eqn (1b) is valid for all values of r. Moreover, if the
values of u, and v, arc equal to zero, then egn (la) is also valid for all values of 1. However,
if the values of u, and v, do not vanish. we have to change the definitions of the body force
in order to include initial conditions in the equations of motion, In such a case the body
force is given by (Gelfand and Shilov, 1964)

£,(x.1) = H(OF(X. 1)+ pu, (X)0(1) + pvy (x)(1). (8)

where d(7) is the Dirac-delta function and H(¢) is the unit step function, i.e. H(t) = 0 for
< 0and H(r) = 1 for 1 > 0. As a result, the equation of motion becomes

dive+f,(x.1) = pi(x.1). 9)

Although in the rest of the paper we use f as a matter of simplification in notation, the
developments apply to both zero and nonzero initial conditions, where in the latter case we
simply need to replace f by f, according to eqn (8).

3. REPRESENTATION FORMULAS

Consider two electroelastic states. namely [u. 6. ¢. D] and [i. &, ¢, D]. The first state
represents the solution 1o piezoelectric problems with finite domains and general loading
conditions. The sccond state is of artificial nature and represents the fundamental solution
to the case ol an infinite piezoelectric medium subjected to an impulsive point force and an
impulsive point charge. Each state is assumed to satisfy the governing equations introduced
in the previous section. More specifically:

~

G, +1 = pi
D, =yq

First state < ) (10)
5, = Coutly 1+ €;$
L D, = gt — €y
5,1 = pi,
Second state < Di. =4 (11)

G, = Coll s+ e;0 4

D, = eyt —e404,

where the body force fand the electric charge density ¢ for the second state will be specified
at a later stage. Let t = gv and D, = D -v be the traction and normal components of the
electric displacement. respectively. at the boundary. Furthermore, let a function II,, be
defined as tollows :

a ~ ”

M. = | fxigdl+ {xi,dA —

J s JoA

(/*(]SdV-f—J D, x¢dA, (12)

J4 ‘4

where the first two terms represent mechanical work and the last two terms represent
clectrical work with signs in accordance with the use of the electric enthalpy (3). The symbol
x denotes the operation of convolution in time. which for arbitrary functions f and g is
defined as
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s

g = f(x.1—ng(x. 1) dr. (13)

J
Likewise, let a second tunction I, be given by

~

I1,, =J _f.'*zndv’Jr[ foer,dA -
£ C A

PYRREC Y

~ ~

gepdl +

3 Y

DxpdA. (14)

SR

where t = v and D. = D v on 4. However. it can be shown that eqns (12) and (14) are
equal to each other. The proof is accomplished by recognizing that

[ [t+d,+D.*$)dA = J [— [+ piiyeal, 4+ o+, | AU+ | [gxd+Dxp,]dV.

Joa 4 J#

as a consequence of the divergence theorem and the ficld equations. Inserting this relation
into eqn (12) yields

I,. = J (o, %0, + piixia ] dV+ | Dxd,dl (15)
4 ;

J A

Furthermore. for linear piezoelectricity the following relation holds true:
o0, +Dxd, = 6, xu,  + [j,*(/)‘,

and since

Pl = p 1'7',*1/.‘
it follows that
Iy, =11,,. (16)

Equation (16) is the starting point towards the derivation ol representation formulas
for electroelasticity. Such a derivation is based on two independent loading conditions for
the second (artificial) state. where a unit force and a unit charge (viewed as special dis-
tributions of body forces and charge density) are applied at a point & = (&,. 2. &3) of the
piezoelectric medium (commonly known as the “source point™). W¢ make a clear distinction
between these two loads by treating them separately as follows:

(I) Let the body force and electric charge density for the second state be given by

fix. 1) = d(x=)dne,. gix.1) = 0. (17)
where e, is a unit vector along the v-axis. specifying the direction of the unit force, and

0(x) = 3(x)0(x2)0(x3). We seek a solution to the system (11) in terms of functions (x, ¢)
and ¢(x, #) satisfying the causality principle. i.c.

Wx.n=0. ¢px.H0=0 ifr<0. (18)

When the applied load is given by eqns (17) it is useful to introduce the following definitions :

d(x.1) = U, (x.2.1)

G0 = U (x. 20
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L(x, 1) = T, (& X, 1)
D(x.1) = Tu(E.X,1), (19)

where U, and U,,, commonly known in the literature as Green’s functions, represent the
displacement (in the /-direction) and the electric potential, respectively, at the field point x
due to a unit force applied at £ in the j-direction. Likewise, T, and T, which are the
derivatives of the Green’s functions, represent the traction on the boundary (in the i-
direction) and the normal component of the electric displacement, respectively, at x when
the previous unit force is applied at &. The use of a different order in subindices and
arguments for the functions U, and T, is not arbitrary and will become more meaningful

at a later stage of this section. Using eqns (17)—(19) in eqn (16) yields

u(S. 1) = [

Jes

J [Ux.¢r—n(x. )+ U (x, & 1—1)D.(x, 1)] dr dA(x)

0

—J JI [T(& X t—=1ux, 1)+ T (&, x, t—1)p(x, 1) dr dA(x)

0

+ J J [U(x, & =i (%, 1) = Uy(x, & 1= Dg(x, D] dedVix) . EeB, (20)
4 JU

)

which 1s the representation formula for the elastic displacement. Equality (20) is a gen-
eralization of the representation formula of elastodynamics, where in this case electrical
effects are also taken into consideration.

(IT) Let the body force and electric charge density for the second state be given by

f(x,/) =0. g(x.1) = —5(x—£)d(). 21

Again, the solution to eqns (11) is assumed to satisfy the causality principle (18) and a new
set of Green’s functions and their derivatives is introduced, according to

a(x,0) = Us(x, 5,0
(IB(X, 1 = Us(x.E,1)
n(x, 1) = T,(E,x, 1)

D.(x, 1) = Toi(E. X, 1), (22)

where the meaning of the variables on the right-hand side is similar to that of eqn (19),
except that in this case a negative unit charge is applied at the source point. Using eqns
(18) and (22) in eqn (16) yields the representation formula for the electric potential, namely

¢(é*’) = J\ [ [L’v,_,;(x,é,f*T)f,(X,T)+L/744(X, §~ I_T)D\‘(X't)] deA(X)
A Jo
- [ J‘ [Tlli(éﬁ x,f—T)M,(x.T)+ T44(L_:,x,[—f)¢(x, I)] deA(x)
+J J [Ua(x, & 1= 0)fi(x, 1) = Uy (x. St —Dg(x, D] dedV(x), {ed. (23)
2 J0

Formulas (20) and (23) can be combined into a single expression by introducing the
matrices
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U, (& T 7.,
U="1"" S T = 24
L41 L44‘ f4, fu} ( )
and the four-dimensional vectors
ful [ t] [ f
d= < - =< - b=x 5. (25
of PTAg T T -yl )

It should be clear that. fully expanded. U and T arc 4 x 4 matrices and that in component
form the four-dimensional vectors are denoted by .. py and hy. Thus. when N =1, 2,3
the vectors are associated with mechanical variables, while when N = 4 they relate to an
electrical variable. Using eqns (24) and (25). the representation formulas can be written in
matrix form as

U'(x. . r—1)p(x.t)drdA(x) —

JOA G GOA G0

T x.r—d(x, 1) drdA(x)

U'x. Sr—Db(x.t)drdV(x)., Sed. (26)

A turther simplification in notation follows by noting that if the body occupies the whole
Euclidean space we have that

U x.n) =UNx.2r). (27)

where the superscript T denotes the transpose of the matrix. This equality can be obtained
by using egn (26) at time v = 0 and by replacing b(x, ) by an impulsive load f or by a
concentraled charge ¢. As a consequence of this symmetry condition. the matrix rep-
resentation formulat becomes

» ™ ~ ~
Ul x.r—opix. rydedA4(x) — '

BRI AN

T x. 1 —)d(x, 7)drdA(x)

0

+ Uil.x.r—obx.tydrdV(x). Ses.  (28)

JaJo
That is, the operation of transposition is eliminated and all arguments of U and T appear
in the same order.

Let us recall that representation formulas are an important component of a BEM. As
its name suggests. this numerical methodology relies upon integrations made on the bound-
ary of the body. Therefore. a complete knowledge of the behavior of the functions involved
in the first two integrals of eqn (28) is required. The following sections are devoted to the
evaluation of the fundamental solutions U and their derivatives T and also to the study of
their behavior on ¢.4.

4+ FUNDAMENTAL SOLUTIONS

It is clear that to evaluate the integrals involved in eqn (28) we must first know the
matrices U(C. x. 1) and T(Z. x. 7). The latter. however. can be obtained from the former
through the constitutive relations. as we show in Section 6. In the present section we limit
ourselves to the derivation of the components of U. We start by noting that because the
body is assumed to be homogeneous we can write

FIn the remainder of the article we prefer 1o use the wording “representation formula™ when addressing eqn
(28). although it 1s ¢lear that in reality there are four formulas mvolved
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Upn(Ex00) = Uy (00x =& 1) = Upyy(x = E01). (29)

where the first equality is a result of a shift of coordinate axes and in the last parenthesis
we omit the zero for purposes of simplification. Moreover, if we assume the load to be
placed at the origin of coordinates. we can write U, (x. 1) instead of U, (x =<, 1). We will
follow this simplification throughout most of the article. Next, let L (V, @) be a differential
operator given by

L(V.c,) =

o¢; 0 A a (30)

0 0

where A(V). a(V) and «(V) are tensors of rank two, one and zero, respectively, with
components
L . -4
« { « & 4 C
‘40’\ = ([/k/ ~ PO Pk TRTEN - X=Cp A ~ - (31)

Cx; Oy, Cx 8xy éx; 0x,

As a consequence. eqns (5) can be written with direct notation as
L(V.c)d =b. (32)

Furthermore, when the loads in the right-hand side of eqn (32} are given by the point
loads (17) and (21), the above relation becomes

L(V. )U(x, 1) = 3(1)d(x)]. (33)

where I is the 4 x 4 unit matrix. In order to solve eqn (33) we make use of the plane wave
transform. That is, (x) and U can be represented by integrals over the unit sphere {n| = 1
in the following manner (Gelfand and Shilov. 1964):

| .
ox) = — V-

. 3(n) dQ(n) (34)

Jin| =1

U(x.1) = Vin, w,1)dQ(m), w=n-x, (35)

Jonj |

where dQ(n) is the unit sphere’s surface element, V- is the Laplacian operator and V(n, o,
t) is a new function which relates to U through eqn (35). In passing, we note that in the
literature of generalized functions. such a relationship receives the name of Radon trans-
form. Using eqns (34) and (33) in (33) yields the differential equation for the plane wave
V(n, w, 1), namely

Il N 1
L(n RS )V(n. w.0) = — —— 3N (W), (36)
8n-

co’ Cr
/

where the prime denotes the derivative with respect to w. Since U and V are proportional,
the latter also has the 4 x 4 matrix representation shown in eqns (24). Moreover, for a fixed
column, V can be represented by a four-dimensional column vector v, w}T, where v is a
three-dimensional vector, physically related to the components of the displacement vector
associated to a fixed direction of the point force (for the first three columns of V) or to the
point charge (for the last column of V). On the other hand.  is a scalar related to the
electric potential and associated with a point force or point charge depending on the column
under consideration. Furthermore, letting i, be a unit vector with components {3, 94
Osm). eqn (36) can be written as



Representation formulas and solutions for piezoelectricity 3315

[
— AN ()i

PV — AV —ay”
8-

il

|
—a V' = — (1)), (37a,b)

8-

where it must be kept in mind that A. a and % are now functions of the direction vector n.

Using eqn (37b) to solve for 4" and 1aking into consideration that x(n) is positive definite,
we obtain

W= . Sy (38)
which once inserted in egn (37a) produces

|
PV —Bv' = — 51} (w)F. (39)
-

where

(40)

That is, the original system of coupled partial differential equations given by (33) has been
reduced to a differential equation for the variable v. which by the causality principle can be
expressed in terms of a new function as follows:

vin,m, 1ty = Hiywino o, 1), (41)

where w(n, w. ) is C' in [0. %) as a function of time. By virtue of the properties of the
delta function, the derivatives of eqn (41) yield
V(n. o, 1) = (W, . 0) -+ 3()Ww(n. o, 0) + H(H)W(n. w, t)

vin o, 1) = H(nw'(n. o, 1), (42)
which once substituted in egn (39) give
pw—Bw =0, 1>0. (43)
together with the initial conditions

wn..0)=0

|
wn.om.0)=—  3"(m)F(n). (44)
ST p

Since egn (43) has constant coeflicients and all derivatives are of the same order. it
follows that w has plane wave solutions of arbitrary shape. Hence, we consider a trial
solution of the form (John. 1955)

SAS 32-22-F
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w = cg(w— A1), (45)
where ¢ is a constant vector and g(-) is a scalar valued function with nonzero second
derivatives. More precisely, eqn (45) represents a plane wave with polarization vector ¢ and

wave front normal n, propagating with velocity 2 parallel to n. Substituting eqn (45) into
(43) reduces the differential equation to a system of three algebraic linear equations, namely

[pi°1—BJc =0, (46)
where 1 is the 3 x 3 unit matrix. Nontrivial solutions of eqn (46) exist if u = pi* is an
eigenvalue of B. Since the linear operator B is bounded, symmetric and positive definite

(Balakirev and Gilinskii, 1982), its three eigenvalues (denoted by p,, y, and p;) are real
positive numbers, uniformly upper and lower bounded with respect to the vector n. Hence,

r
= B =4 (47)
p
are the real roots of the characteristic equation
detN(n, 2) = 0, (48)

where N 1s the matrix

N(n, /) = pi>1—B(n). (49)
As we show in Appendix A, the solution to eqn (43) with conditions (44) is given by

%Z &' (w—41) res {N"'(n, 2)}F(m), (50)

o

wn,w, 1) =

where it is important to emphasize that the summation is effected over distinct roots 4, only
and res{-} involves the residues of N~'. The use of this expression in eqn (41) yields

v(in,w, 1) = %Zé’((u—xﬁﬂ) res {N~'(n,2)}F(n), (51)
- 4T

which in turn allows us to find the function  after integrating eqn (38), i.e.

y(nw, 1) = b [v(n, w, t)-a(n)

S(NS(w) .
2(n) - ()4‘11} (52)

-

Expressions (51) and (52) determine the components of a fixed column of V and,
therefore, of the matrix U through eqn (35). The final expressions for the components of
the latter can be simplified by noting that the delta function satisfies the relation

144]

TSN A= t—x (53)

Vo 7k

O(w—At) = —

and that the integral over the unit sphere of the second term in eqn (52) can be calculated
explicitly yieldingt

TEquation (54) 1s a consequence of a result on fundamental functions for homogeneous second order elliptic
differential operators (Gelfand and Shilov, 1964).
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‘I“J waf) dQ(m) = %, o (X) = €x XXy, (54)
n -1 () Ve (x)

where €, are the cofactors of the dielectric tensor ¢,. In addition, the eigenvalues A, have
the following properties:

4x(n) = A, (—m) (55)
and

res (N '(n,4)} = res (N"'(-mA)} = — res, {N~'(n,2)}. (56)

As a result of these symmetries, the sums appearing in eqn (51), which were made over
distinct roots, reduce to the sum over only positive distinct roots. Thus, the use of eqns
(51)-(56) in (35) yields

Un(x,t) = — H({) :j S S8(A) res (27N, (0, A)} Fa(n) dQ(n) (57)
4r- 1 =174 >0 LT
H(t) ¢ . . n ) i(m)
Uin(X,0) = — —47([—) :—,j‘ y /E,OO(A) res (272N, (n, A)}F,M(n)[;((n) dQ(n)
— "SM . (58)
dny/ o (x)

which are the dynamic fundamental solutions (or Green’s functions) for piezoelectricity
written in component form as integrals over the unit sphere. These formulas, together with
properties (55) and (56), give an additional symmetry property for U, namely

Ux—& 1 =U(E—x,1). (59)

Finally, by means of eqns (27) and (59) we can write

UT(x—¢&.1) = U(x—<,1). (60)

5. ONE-DIMENSIONAL INTEGRAL REPRESENTATIONS

A substantial economy of numerical calculations can be obtained if the dynamic
fundamental solutions are evaluated by means of line integrals rather than surface integrals.
In this section we show that such a one-dimensional integral representation is possible by
using as an intermediate step the concept of the slowness surface (Burridge, 1967 ; Musgrave,
1970). The slowness surface S is created by means of a vector s whose direction is that of
the vector n and whose magnitude is equal to the inverse of the speed of a plane wave
moving in the n-direction. That is, if s€ S, then

- "
T Jim)

(61)

Since from eqn (48)
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detN(n, 2) = 2° det N<;~l 1), (62)

the slowness surface can be represented by
Q(s) = detN(s, 1) =0, (63)

which consists of three smooth and closed slowness sheets S, S, and §;. We note that for
elastic isotropic materials two of these sheets coincide (i.e. they are identical). On the other
hand, when the material is strongly anisotropic, as is the case of piezoelectrics, these sheets
are all distinct and, therefore, do not overlap except at certain points defining an intersection
line /,, that mathematically can be expressed as

Iy = 10(s) = 0. VQs) = 0. (64)

For a graphical representation of eqns (63) and (64) from a purely elastic point of view,
the reader is referred to Musgrave (1970), where slowness surfaces are shown for several
materials.

Next, let us introduce an intersection line determined by the slowness surface S and
the plane x s = r moving in the direction x with unit speed, i.e.

I(x,1) = {Q(s) = 0} N {x*s =1}. (65)

The passage from the unit sphere to the slowness surface requires a relationship
between the corresponding elements of area. This relation is given by

ls- VO

dQ(n) =
Is|*IVOI

ds(s), (66)

where dS is the element of area of the slowness surface. Furthermore, if /(x, #) and /;
intersect at most at a finite number of points, eqns (57) and (58) reduce to (see Appendix
B)

Ui (x.1) 47> FIL -0 VQ| () Fius (8)0(t —x - 8) dS(s) (67)
; H( ¢ sgn (s°VQ) S(7 —x - S
Van(x.1) 4’ 61L o 2(S)IVOI Py(8)Fiu(8)a;(s)o(1 —x - 5) dS(s)

5(()54‘11»7
4./, (x) ’

(68)

where sgn(') is the signum function and

P(s) = Q(s)N (s, 1)

is the transpose of the matrix of cofactors of N(s, 1) or so-called adjoint matrix of N.

It must be emphasized that expressions (67) and (68) are valid for all possible values
of time except for a time ¢ at which the plane x*s = ¢ includes part of the line /,, in which
case the integrands become indeterminate. A typical example of such an event is furnished
by the case of a transversely isotropic material when its axis of symmetry coincides with x.
Even under this condition there are a limited number of times for which the lines /(x, 7)
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and /, can overlap. For these isolated values of time, say #,, we can still calculate eqns (67)
and (68) as the limiting cases of integrals evaluated in the neighborhood of #,.

Expressions (67) and (68) can now be reduced to one-dimensional integrals along the
line /(x, 7). For the points s on this line we have

dS(s) = di(s) dm(s),
where d/ is the element of the line /(x, t) and dm is the element of the normal m to /(x, ¢)

that is tangent to the surface Q = 0. Moreover, since m is a linear combination of the
vectors x and V@, and m*VQ = 0, we can set

m = ([|VO|*x— (x*VQ)VQ]

with ¢ a constant. and from where we deduce that

cx-s) _/IXPIVOP = (x-VQ)’
om VO '

Consequently, after some mathematical manipulations, eqn (67) reduces to

|~

di(s), (69)

L" (X [) ‘i ({ i '[ Eg]‘-l (S . v Qz )1 ,‘,(S)I M (S)
IR ASA = - -
! foeny \/|X|Z|VQI2 — (XVQ)2

()

47’

while eqn (68) becomes

Usy(x.1) = DY ’ (s)— — (70)
47 O i as) RTIVOI —(x-VQ)Y  Anm )

H(1) (ﬂ [ sgn (s VQ)P,(S)F,,(s)a;(s) dls (1)04p

Notice that when the vector VQ(s) (for se l(x, 1)) is parallel to x, the denominators in the
integrands of eqns (69) and (70) vanish. Moreover, if ¢ is such a value of time that /(x, ?)
contains the points s for which VQ(s) is parallel to x, we should expect integrals (69) and
(70) to have discontinuities when passing through this time.

To conclude this section we must emphasize that the solutions (69) and (70) have the
following properties :

Ix|

I

Ux.1n) =0 ifr<

max

o Ix]
Ux,) =0 1ifr>-—,

Chin

where ¢, and ¢y, are the maximum and minimum wave speeds among all possible
directions of propagation. If |x| = ¢, we say that the wave front is at x, while if |X| = ¢,nint,
we say that at x we have the trailing edge of the wave. In passing, we note that the presence
of the trailing edge of the wave plays an important role in the computational implementation
of the fundamental solution for the BEM (Ugodchikov and Khutoryansky, 1986).

6. SINGULAR SOLUTIONS

Here we turn our attention to the matrix T. We start by noticing that each column of
T(&, x, ¢), as a function of & and 1, is a solution to eqn (5) with f(£, 1) = 0 and g(&,t) =0
when ¢ # x. This solution is named the singular solution because its singularities are one
order higher than the singularities corresponding to the fundamental solution U. In the
present section we show that the components of T are derived from U using the constitutive
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equations and, furthermore, that they can also be evaluated in terms of one-dimensional
integrals over the line /(x, #). For that purpose we introduce the tensor S such that

Tyun(&, %, 1) = Syu(x =&, D)v(x), X€e0A. (71)

In the framework of the paper’s notation, Sy;,, denotes the stress (if N = 1, 2, 3) or normal
component of D (if N = 4) due to the concentrated source of mechanical (M = 1, 2, 3) or
electrical (M = 4) nature. In terms of S and U, the constitutive relations become

]":)
i

o "
//’M(x é [) = I/A[ [A'M(x—g* [)+e/1/$ U4M(X—L:, [)
e

N

X,
"<

Sam(x—=E,1) = e//«/q UM:(" - _U4M(x'—é- 0. (72)

“ox,

Therefore, it is clear that the calculation of T reduces to calculating the derivatives
of the fundamental solution U. To obtain a one-dimensional integral formula for these
derivatives, we make use of eqns (67) and (68), which yields

¢ H(@) &2 J’ s, sgn (s VQ)
ree UiM i) = .
T PR 7/ B
X Py(S)F 0, (8)0(t —x *5) dS(s) (73)
(’ H(1) ¢ spsgn(s*VQ)
bw(x )= — e LO T HSIVO] Pi(s)Fn(8)a;(s)
0(1)54'"5/\,

X (t—x-5)dS(s)+ —— (74)

dnfo, (x))2

Following the steps of the previous section we can rewrite these expressions in one-
dimensional form, namely

Uy = - HO & J en (8 VOIS PUOIE) ) (75)
(:.?,\A. 4n- Or Hx.0) lel IVQI —(X'VQ)'

g Ut = 50 0 | RO TN

e, 4w o Juo a(s) /X IVOP — (x-VO)?

M“ﬁ& (76)
4o, (x)]* 7

Knowledge of the derivatives of U determines S and, therefore, the singular solutions
T through eqn (71). It is interesting to note that in terms of a numerical implementation
the first and second derivatives with respect to time appearing in eqns (69), (70) for U and
in eqns (75), (76) for T do not need to be calculated. This is so because in eqn (28) the
integrals in time become the convolution of the functions involved in each integrand, and
since fxg = f*¢, rather than taking the derivatives of U and T we only need to differentiate
the vectors p, d and b with respect to time.

7. THE SINGULARITIES OF THE REPRESENTATION FORMULA

We recall that the three main preliminary components of a BEM are : (i) representation
formulas, (ii) fundamental solutions and (iii) boundary integral equations. The first two
items have been addressed in the previous sections. The third item depends strongly upon the
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behavior of the integrands involved in eqn (28) at the boundary of the body. Consequently,
knowledge of the types of singularities involved in such integrands becomes an issue of
fundamental importance.

We note that the representation formula (28) has two boundary integrals: the so-
called potentials of single and double layer. The integrand of the first potential (which
involves U) has a singularity of order |x —£|~", while the integrand of the second potential
(which involves T) has a singularity of order |x — &| 2. Thus, it follows that the first integral
does not have jumps when the boundary is approached from within the body. On the other
hand, the leading singularity of the second potential is of exactly the same order as the
singularity arising in static problems. For this reason it is useful to recover from the dynamic
equations the corresponding fundamental and singular solutions of static piezoelectricity.
These solutions are obtained by simply integrating eqns (57) and (58) with respect to time:

Uly(x) = l J B, ' (n)F,,,(n)d/(n) a7
= x] Jio
r ) N
Uin(x) = ' B m)F ) ™ gy — O (78)
877 |X| Jiyoo *(n) 4my/ oty (X)

where the superscript s stands for “static’ and /,(x) is the intersection of the unit sphere
In| = 1 with the plane x-n = 0. It is clear that expressions (77) and (78) have singularities
of order |x|~'. Moreover, the singular solutions T*(¢, x) for static piezoelectricity can be
obtained by first differentiating eqns (77) and (78), which gives

R - [ C By () F ()] i) (79)
P = - — [ B ' (MF,(n n
e s i

LA"U;M(x) _ X

’{fb@%mwﬂ%mvmﬂﬁ (80)

i
Cxy 8 |x|* i €1 a(m) 4nfa, (x)]*?

Second. these results are substituted into eqn (72), which in turn are introduced in eqn (71),
from where we deduce that the singularities of T'(&, x) are of order |x — &| ~2. What is crucial
in this analysis is the fact that the expression

T x. Dxd(x. 1) =T (S, x)d(C. 1) (81)

has only weak singularity of type |x—¢&| ™', As a consequence, the boundary integral of eqn
(81) does not have jumps when the boundary is approached from within the body. We are
now ready to discuss the third important aspect of the BEM.

8. THE BOUNDARY INTEGRAL EQUATION

This is obtained by means of the following procedure : a constant vector d is substituted
into eqn (28). and since in this case the vectors p and b are zero, we have that

J T (& x)dA(x) = =1, xe4,
;A

which is a generalized form of Gauss’ integral. Multiplying both members by d(¢, 1) gives
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TE A N dAX) = —d(E. 1), XeB,

vi A
from where the representation formula (28) can be rewritten as

” ~
U(E—x, t—1)p(x, 1) drtdA(x)

)

[ [J T(i.x.z—r)d(x.T)dr—T‘(;’.x)d(x.l)<ld‘4(x)-—
Joa L ,

Joa Jo

™

LZ—x.r—1)bx, 1) drdV(x), (eB. (82)

JAJ0

The importance of this formula resides in the fact that now the integrands of both
boundary integrals have a weak singularity of order |x — | ™', Consequently, the limit form
of eqn (82), as the observation point ¢ tends to the boundary ¢4, coincides with (82) on
the boundary (i.e. { e 4). where it holds not only on smooth points of ¢# but also on
points or lines where the normal does not exist. Equation (82) on ¢4 is the regularized
form of the boundary integral equation for dynamic piezoelectricity.

Finally. to obtain the complete system of boundary integral equations containing the
unknown variables one must consider, in addition to egn (82). the boundary integral
equations representing the fields of the surroundings (for example, the environment or
other deformable dielectrics or conductors) of the body. In this respect we want to bring
to the reader’s attention eqn (6d). We recall that at the dielectric—dielectric interface there
is no surface charge. i.e. \v = 0. In such a case, both dielectric media (which in general may
have different material characteristics) will have the representation (82) together with the
condition of continuity of the normal component of the electric displacement. The same is
true for two electrically conducting bodies. However, at the boundary between a dielectric
and a conductor the surface charge is not zero and a jump of the normal component of the
electric displacement takes place. In this case. in addition to eqn (82) for the dielectric
body we need a boundary integral equation for the elastic conductor (Ugodchikov and
Khutoryansky, 1986). Finally. we can take a step further to note that if the piezoelectric
body is surrounded by air or vacuum one can use. to a good approximation, the condition
D v = 0, where D corresponds to the electric displacement within the body. This approxi-
mation stems from the fact that the dielectric permittivity of a piezoelectric material is
usually three orders of magnitude higher than the permittivity of air or vacuum.

U CONCULUSIONS

We have been concerned with a three-dimensional electroelastic analysis of homo-
geneous, anisotropic dielectrics. In contrast with previous formulations, transient effects
have been taken into consideration. This paper provides the mathematical foundations for
the development of the BEM and its application to problems involving piezoelectric
materials. Consequently, the article has been devoted to three main subjects. (a) The
derivation of a representation formula by means of a generalization of the reciprocal
theorem of elastodynamics. This formula includes fundamental and singular solutions for
the infinite piezoelectric medium as kernels of two boundary and one volume integrals.
(b) The derivation of fundamental and singular solutions to the transient equations of
piezoelectricity. These solutions have been first obtained through the plane wave transform
and represented by means of integrals over the unit sphere. Furthermore, we have shown
that by introducing the concept of the slowness surface. alternative and simpler integral
representations can be deduced. Of particular interest has been the description of the
fundamental and singular solutions over one-dimensional integrals which are both simple
in form and suitable for numerical computations. (¢) An analysis of the behavior of the
representation formula when the boundary is approached from within the body. Here we
have shown that by using the corresponding static singular solutions, a regularized form of
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the representation formula can be obtained which is valid not only at the boundary but
also at points where the normal does not exist.
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APPENDIX A
Let g(z) be an analytic function of the complex variable = with a cut on the positive imaginary axis. As a
consequence. g(w — Ar) is analytic in the complex plane 4 with a cut ¢, along an axis parallel to the imaginary axis
whose origin is at the point 2, = .7 and its direction is dictated by the sign of 7. Furthermore, let % be a simple

closed curve in the complex plane 4 containing in its interior the roots of the characteristic equation (48) but
excluding the point »,. The curve % exists if

W # tgm). k=1, 6. (Al)

in which case w is of the form

-
win . t) = %’{ (# glw--/20N '(n. 7)F(n) d}},

2ni

where #!-} denotes the real part of the function enclosed within braces. Applying the operator N(V. é,) to this
expression yields

oW — Bw' = %{—]:#; G i0) d/l}F(n).
2mi Je

whose right-hand side vanishes because of Cauchy’s theorem. Hence w obeys eqn (43) if (A1) holds true and can
be written (due to the residue theorem) as

win.om.1) =Y #{glw—2ig0)) res N '(n.2)}F(n). (A2)

*

In turn. the initial conditions (44) become
win.0.0) = #ig(w)] ¥ res [N '(n.7)F(n)

winm.0) = —#lg(w)} Y res {ZN '(n.2)}F(n).
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Since N(n, ~) and 2N ‘(n, 2). as functions of the complex variable 4, are analytic in the entire complex plane
except for the poles given by eqn (47), by the residue theorem we have

Y ores (N "(n2)) = —res (N '(n.j)} =0

) i . !
Z/r;s UN Yl = ~ res {ZN Y(n, 2)} :;1‘

which produces
w(n,;,0) =0
|
wn.m,0) = — :.ﬁjg’((u)}F(n). (A3)
i

Comparing eqn (A3) with (44) we obtain

[
YWL.(/(('))} = ——9'(m),
87

which holds true if we extend the real function ¢ to the whole complex plane. To that purpose we choose (John.
1955)

I | 5
93 = gi(2). gal2) = —— [l + I,In:*]
l6m* m

because

1
AL gu(2)] = ——7sgn [#{z}).
lon-

As a consequence, eqn (A2) becomes (50). 1.¢.

| —
win o 1) =- =Y 8(em—7.0 res IN '(n. )] F(n).
87’(3 ” s

APPENDIX B

Let us consider the inverse of N, i.e.

where N¢ is the adjoint matrix of N. The denominator of this expression has simple poles provided the roots of
the determinant are distinct. Thus. by virtue of the residue theorem we have

NY(n. 2
res (N Yn. 2} = {ff ! Q"}

[»f—'. det N(n. /)
e b

Furthermore. since

detN(n.z,) =0

and det N(n. ~) is homogeneous in both arguments. it follows that



Representation formulas and solutions for piezoelectricity

[/’. :T det N(m, 2} +#; .( det N(n. }.)] ={.
S én, .

PN

which allows us to write

S OIN ) = )
Je N A = S et N )]

Therefore, after some mathematical manipulations we obtain

| N“(n. , 1 P
Cres (N ') = (n. 23) _ 1 PG

PE /- V[detN(n, /;)] h s-VQ'

4

where we have used the relations s = ny2 and P(s) = N'(n: /. |).
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